If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-25x+99=0
a = 1; b = -25; c = +99;
Δ = b2-4ac
Δ = -252-4·1·99
Δ = 229
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{229}}{2*1}=\frac{25-\sqrt{229}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{229}}{2*1}=\frac{25+\sqrt{229}}{2} $
| 11=-x-8 | | x^2-25+99=0 | | -851=-23(g-921) | | -3+4y=7,y=2.5 | | n+445=(-130) | | -(3x=4)-8=7x | | -21(k+930)=(-966) | | -5x-12+3x=-16 | | 12=20-4g | | 7(4x-10)=5(x+10) | | 3/4n+4=10,n | | j+(-266)=(-329) | | 8x+9=4x+49 | | 40x-30=-5(-2-4x) | | 3(3x-1)=15+6x-2x-3 | | (-7)÷1j+38=47 | | 1j÷-7+38=47 | | 293x+4)=32 | | 1z+20=27 | | 15x-10=40-5x | | 15=k-81 | | 8(t+1)=56 | | 3z^2−z−1=0 | | 7(k-91)=42 | | x+5x+(x-30)=60 | | (f+3)+4f=6+6f | | −3x^2−12x=−231 | | 6x+5∘=4x−45∘ | | 8-4h=-4 | | 1y=12/1y2=81/4 | | 6b-12=7b-4 | | x+2x+(x+68)=180 |